Refine your search:     
Report No.
 - 
Search Results: Records 1-13 displayed on this page of 13
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of genetic and electrochemical diagnosis and inhibition technologies for invisible corrosion caused by microorganisms (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute for Materials Science*

JAEA-Review 2023-031, 101 Pages, 2024/01

JAEA-Review-2023-031.pdf:24.47MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of genetic and electrochemical diagnosis and inhibition technologies for invisible corrosion caused by microorganisms" conducted from FY2020 to FY2022. The present study aims to develop innovative diagnostic techniques such as accelerated test specimens and on-site genetic testing for microbially induced and accelerated corrosion of metallic materials (microbially influenced corrosion, MIC), and to identify the conditions that promote MIC at 1F for proposing methods to prevent MIC through water quality and environmental control.

JAEA Reports

Development of genetic and electrochemical diagnosis and inhibition technologies for invisible corrosion caused by microorganisms (Contract Research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute for Materials Science*

JAEA-Review 2022-045, 82 Pages, 2023/01

JAEA-Review-2022-045.pdf:4.6MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of genetic and electrochemical diagnosis and inhibition technologies for invisible corrosion caused by microorganisms" conducted in FY2021. The present study aims to develop innovative diagnostic techniques such as accelerated test specimens and on-site genetic testing for microbially induced and accelerated corrosion of metallic materials (microbially influenced corrosion, MIC), and to identify the conditions that promote MIC at 1F for proposing methods to prevent MIC through water quality and environmental control. We also aim to develop a research base based on materials, microorganisms, and electrochemistry, to develop technologies that can be used by engineers in the field, …

JAEA Reports

Development of genetic and electrochemical diagnosis and inhibition technologies for invisible corrosion caused by microorganisms (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute for Materials Science*

JAEA-Review 2021-059, 71 Pages, 2022/02

JAEA-Review-2021-059.pdf:4.25MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of genetic and electrochemical diagnosis and inhibition technologies for invisible corrosion caused by microorganisms" conducted in FY2020. The present study aims to develop innovative diagnostic techniques such as accelerated test specimens and on-site genetic testing for microbially induced and accelerated corrosion of metallic materials (microbially influenced corrosion, MIC), and to identify the conditions that promote MIC at 1F for proposing methods to prevent MIC through water quality and environmental control.

JAEA Reports

Study of corrosion and degradation of the objects in the nuclear reactor by microorganisms (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Keio University*

JAEA-Review 2021-048, 181 Pages, 2022/01

JAEA-Review-2021-048.pdf:14.5MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Study of corrosion and degradation of the objects in the nuclear reactor by microorganisms" conducted in FY2019 and FY2020. Since the final year of this proposal was FY2020, the results for two fiscal years were summarized. The purpose of the study is to obtain knowledge related to microorganisms that will be useful in the decommissioning process of 1F. Therefore, we clarified the current conditions of the microbial community inhabiting the power plant and its premises. Environmental samples were taken from several sites such as, topsoil from the south of the plant site boundary (south of the treated water tanks), seabed soil and its above water near the plant, surface water 3km offshore …

JAEA Reports

Study of corrosion and degradation of the objects in the nuclear reactor by microorganisms (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Keio University*

JAEA-Review 2020-047, 63 Pages, 2021/01

JAEA-Review-2020-047.pdf:3.85MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Study of corrosion and degradation of the objects in the nuclear reactor by microorganisms" conducted in FY2019. The purpose of the study is to obtain knowledge related to microorganisms that will be useful in the decommissioning process of the Fukushima Daiichi Nuclear Power Station. For this reason, the current conditions of the microbial community inhabiting the power plant and its premises will be clarified. In the first research year, we obtained environmental samples such as soils from the south of the boundary of the plant, seabed soils near the plant, and surface water 3 km offshore from the plant, and successfully prepared their microbial genomic DNAs.

Journal Articles

Sorption behavior of Np(V) on microbe pure culture and consortia

Onuki, Toshihiko; Kozai, Naofumi; Sakamoto, Fuminori; Utsunomiya, Satoshi*; Kato, Kenji*

Chemistry Letters, 46(5), p.771 - 774, 2017/05

 Times Cited Count:0 Percentile:0(Chemistry, Multidisciplinary)

The sorption behavior of Np(V) by the microbe consortia and by a single pure culture of Fe reducing bacterium was studied at pH between 3 and 7 in resting cell conditions. The sorption of Np(V) by the Fe reducing bacterium obtained in the inert condition and by the consortia in aerated condition were higher than by the Fe reducing bacterium in aerobic condition at pH below 5, strongly suggesting presence of other mechanism than the adsorption on microbial cell surface, i.e. reduction to Np(IV).

Journal Articles

Degradation of Eu(III)-malic acid complexes by $$Pseudomonas fluorescens$$

Nankawa, Takuya; Suzuki, Yoshinori*; Ozaki, Takuo; Onuki, Toshihiko; Francis, A. J.*

Journal of Alloys and Compounds, 408-412, p.1329 - 1333, 2006/02

 Times Cited Count:3 Percentile:28.65(Chemistry, Physical)

We studied the biodegradation of Eu(III)-malic acid complexes by $$Pseudomonas fluorescens$$. Ten milimolar Malic acid was degraded in the absence and in the presence of Eu(III) of 0.05, 0.1, and 0.2 mM. The degradation rate of malic acid increased with decreasing the ratios of Eu(III) to malic acid. These results suggest that the toxicity of Eu(III) can be masked through its complexation with malic acid. The degradation of malic acid was followed by the production of unidentified metabolites which were associated with Eu(III). One of the unidentified organic acids was analysed to be pyruvic acid. Our findings suggest that metabolites can influence the environmental behavior of Eu(III) by biologically transformed through subsequent complexation with Eu(III).

JAEA Reports

Proceedings of the Takasaki Symposium on Radiation Application of Natural Polymers in Asia; October 1 and 2, 2001, JAERI, Takasaki, Japan

Functional Materials Laboratory I

JAERI-Conf 2002-003, 225 Pages, 2002/03

JAERI-Conf-2002-003.pdf:13.75MB

This Takasaki symposium was held annually for radiation processing of natural polymers through research cooperation among Asian countries. The symposium includes the presentations of research outcomes on radiation processing of starches, silk proteins and marine carbohydrates. In starch and cellulose researches, radiation crosslinking of biodegradable polysaccharides was achieved by modifying it to be water-soluble paste. In silk protein researches, pulverization and water-solubilization of the irradiated silk proteins were reported. In marine carbohydrate researches, it was reported that radiation-degraded chitosan and alginate showed promotion effects for plant growth and enhancement of antibacterial properties. In addition, estimation of economic scale of radiation application in Japan and U.S. were introduced. Outcomes of this symposium should contribute the progress in radiation applications in south Asian and Japan. We had the 63 participants consisted of 16 foreign researchers and 60 from domestic organizations. This proceeding compiles the invited and contributed papers.

Journal Articles

Composition range of crystal phase transition of Isodimorphism in poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

Mitomo, Hiroshi*; Morishita, Norio; *

Macromolecules, 26(21), p.5809 - 5811, 1993/00

 Times Cited Count:75 Percentile:96.11(Polymer Science)

no abstracts in English

Journal Articles

Lysis of radio-resistant bacteria by enzyme of achromobacter lunatus

; ; *; *

Agricultural and Biological Chemistry, 40(2), p.427 - 429, 1976/02

no abstracts in English

Journal Articles

Free radical concentration in irradiated bacterial spores

; Franklin Hutchinson*

Biochimica et Biophysica Acta, 95, p.690 - 692, 1965/00

no abstracts in English

Oral presentation

Biotransformation of plutonium

Onuki, Toshihiko; Francis, A. J.*

no journal, , 

We have studied the interaction of Pu with microorganisms. Pu as Pu(6) is preferably sorbed to bacterial cells in the mixture of Bacillus subtilis and kaolinite, and that Pu(6) is reduced to Pu(5) and then to Pu(4) during the interaction with the mixture. Study on reduction of Pu(4) in the presence of citric acid at pH 7.0 suggested that Pu(4) is reduced to Pu(3) by the activity of sulphate reducing bacteria. These facts indicate that microorganisms change chemical states of Pu during migration in environments.

Oral presentation

Microbial life on plastics and its implication on elemental cycling in the aquatic environment

Battulga, B.; Nakayama, Masataka; Atarashi-Andoh, Mariko; Koarashi, Jun

no journal, , 

A growing attention has been addressed on microbial attachment and biofilm formation on plastic debris especially on microplastics (MPs; sizes: $$<$$5 mm) in the aquatic environment. The current study is focused on bacterial and fungal community composition, diversity, and structure in MP-associated biofilms to emphasize potential alteration of elemental cycling by the presence of MPs in the coastal aquatic environment. We collected MP, surface water, bottom sediment, and coastal sand samples from two contrasting coastal areas of Japan on a seasonal basis. Surface morphology and attached microorganisms on MPs were visually inspected by scanning electron microscopy (SEM). A high-throughput sequencing using Illumina MiSeq was performed in the collected samples to investigate the microbial community composition and diversity among different samples.

13 (Records 1-13 displayed on this page)
  • 1